辅导课程


课程示例⇓

英国数学奥赛BMO课程大纲

总课时:30小时

课程大纲【课程中都涉及真题训练,根据学生情况布置真题作业】

1、Number Theory(数论)

Prime Factorization and All About Factors(质因数分解与整数的约数问题)-1课时

Euclidean Algorithm and Bezout's Theorem(欧几里得算法与配属定理)-1课时

Congruence (同余理论)-2课时

Advanced Number Theory Results-Euler's Totient Theorem, Chinese Remainder Theorem, Wilson's Theorem(进阶数论相关结果:欧拉定理,中国剩余定理,威尔逊定理)-2课时

Method of Solving Diophantine Equaiton(丢番图方程的求解方法)-2课时

Base-n Representation and Base Converison(进位制表达与进位制转换)-1课时

2、Algebra(代数)

Recursive Sequences and Recursive Methods(递归数列与递归方法)-2课时

Polynomials(多项式理论)-2课时

Inequalities and Extreme Value Problems (基本不等式与极值问题)-2课时

Function Equations(函数方程)-2课时

Trigonometry(三角学)-2课时

3、Geometry(几何)

Basics in Geometry(几何基础)-1课时

Triangles(三角形及其相关性质)-2课时

Circles(圆及其相关性质)-2课时

4、Combinatorics(组合)

Basic Counting Principles, Permutations and Combinations(基本计数原理,排列与组合)-2课时

Combinatorics Number and Combinatorics Indentities(组合数及组合恒等式)-2课时

Pigeon Holes Principle(鸽笼原理/抽屉原理)-2课时

扫码试听辅导课程~